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Summary. State and federal natural resource management agencies often collect age-structured harvest
data. These data represent finite realizations of stochastic demographic and sampling processes and have
long been used by biologists to infer population trends. However, different sources of data have been com-
bined in ad hoc ways and these methods usually failed to incorporate sampling error. In this article, we
propose a “hidden process” (or state-space) model for estimating abundance, survival, recovery rate, and
recruitment from age-at-harvest data that incorporate both demographic and sampling stochasticity. To this
end, a likelihood for age-at-harvest data is developed by embedding a population dynamics model within a
model for the sampling process. Under this framework, the identification of abundance parameters can be
achieved by conducting a joint analysis with an auxiliary data set. We illustrate this approach by conducting
a Bayesian analysis of age-at-harvest and mark-recovery data from black bears (Ursus americanus) in Penn-
sylvania. Using a set of reasonable prior distributions, we demonstrate a substantial increase in precision
when posterior summaries of abundance are compared to a bias-corrected Lincoln–Petersen estimator. Be-
cause demographic processes link consecutive abundance estimates, we also obtain a more realistic biological
picture of annual changes in abundance. Because age-at-harvest data are often readily obtained, we argue
that this type of analysis provides a valuable strategy for wildlife population monitoring.

Key words: Abundance; Age-at-harvest; Black bear; Cohort model; Mark-recovery model; Recruitment;
State-space model; Survival.

1. Introduction
The age, class, and sex of harvested animals are often col-
lected for monitoring populations as part of wildlife manage-
ment programs. Such data are readily collected and used to
inform management decisions. However, stochasticity associ-
ated with sampling and demographic processes is often ig-
nored, and trends in harvest data are often used to infer popu-
lation trends. Unfortunately, this approach may lead to flawed
inferences about population status if trends in harvest data
are related to trends in harvest or reporting rates rather than
abundance trends. For instance, even with a standardized re-
porting system, hunter reporting rates have changed over time
for the white-tailed deer harvest (Odocoileus virginianus) re-
porting system in Pennsylvania (Rosenberry, Diefenbach, and
Wallingford, 2004).

Robust procedures for analyzing age-at-harvest data typi-
cally require auxiliary data to help model the harvest process

(Deriso, Quinn, and Neal, 1985; Gove et al., 2002). In fish-
eries, statistical catch-at-age models use data from research
vessel surveys or catch-effort surveys to help estimate model
parameters (Fournier and Archibald, 1982; Dupont, 1983; De-
riso et al., 1985). Alternatively, data from marked animals
may be employed more directly to estimate the parameters
(such as survival and sampling probability) needed to explain
changes in age-at-harvest data over time or space (e.g., Maun-
der, 2001; Gove et al., 2002). The latter approach may be
more useful in terrestrial wildlife applications because abun-
dance is typically lower and the probability of encountering
marked animals is substantially higher.

We describe a Bayesian approach to modeling age-at-
harvest data for wildlife populations when auxiliary data
from a marking study are available to help model the har-
vest process. We are motivated by a sampling problem in-
volving black bear (Ursus americanus) in Pennsylvania, where
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age-structured tagging and harvest records were available.
One way of incorporating such information is through the use
of a state-space or “hidden process” model (Newman et al.,
2006). This type of approach is increasingly common in fish-
eries applications (e.g., McAllister and Ianelli, 1997; Meyer
and Millar, 1999; Lewy and Nielson, 2003), but has seen less
use in wildlife (but see Besbeas et al., 2002; Buckland et al.,
2004; Newman et al., 2006). Previous approaches to analyzing
age-at-harvest data for terrestrial species have typically relied
on multinomial models for cohort abundance through time,
with initial population size as an index and success probabil-
ities determined by functions of survival and harvest param-
eters (Laake, 1992; Gove et al., 2002). Although a reasonable
and useful starting place, it is difficult to incorporate fecun-
dity/recruitment, a “+” age class, or random effects based on
frequentist analysis with this type of model structure.

In the following development, we start by describing a gen-
eral model for the analysis of age-at-harvest data that remove
these restrictions. Conceptually, it is composed of two parts:
an observation model and a population dynamics model. Af-
ter constructing an appropriate likelihood and specifying a set
of prior distributions, we carry out a Bayesian analysis using
Markov chain Monte Carlo (MCMC). We illustrate the ap-
plication of our model with a demographic analysis of female
black bears in Pennsylvania from 1986 to 1999; data from a
mark-recovery study during the same time period were used
to inform the estimation of survival and harvest parameters.

2. Model Development
2.1 Data Requirements
The fundamental data needed for age-at-harvest analysis are
an age-at-harvest matrix, C, which summarizes annual har-
vests by sex and age class. We assume that there is no error
associated with aging techniques up to some threshold age, A,
after which individuals are grouped into a “+” category. For
the purposes of this article, we further assume that C only
includes data from the female portion of the population, al-
though extensions to males are relatively straightforward. We
also assume that the investigator has additional data from
marked individuals to help model the processes of survival
and harvest.

2.2 Models for the Sampling Process
We assume that age-at-harvest counts are realizations of a
stochastic process, so that we may write

[C |N,h] = I(C)

T∏
t=1

A−1∏
a=1

[Cta |Nta, hta]

×
[
C+

1A

∣∣N+
1A, h1A

] T∏
t=2

[
C+

tA

∣∣NtA + N+
t,A+1, htA

]
,

(1)

where N+
ta =

∑∞
a
Nta, C

+
ta =

∑∞
a
Cta, [G |H ] gives the condi-

tional distribution of G given H, N denotes the vector of all
Nta variables for which t > 1 (t = 2, 3, . . . ,T ; a = 1, 2, . . . ,A +
1), h denotes the vector of all hta parameters (t = 1, 2, . . . ,T ;
a = 1, 2, . . . ,A), and I(C) is an indicator function used to
disallow cohort abundances that are less than harvest counts:

I(C) =

T−1∏
t=1

A−1∏
a=1

I(Cta ≤ Nta −Nt+1,a+1)

×
T−1∏
t=1

I
(
C+

tA ≤ NtA + N+
t,A+1 −N+

t+1,A+1

)
.

Remaining notation is defined in Table 1. Because all sur-
vivors from N+

1A will be part of N+
2,A+1 the following year,

there is no need for a N+
1,A+1 parameter. The N+

t,A+1 latent
variables are needed in later years because of the nature of
the survival process and the need for the final two abundance
variables to share the same success probability. The need for
this construct should be more apparent when examining the
joint probability mass function (PMF) for abundance in the
following section.

Table 1
Definitions of parameters, latent variables, and statistics used

in the joint age-at-harvest, mark-recovery likelihood

Parameters and
variables
Sta Probability that an age a individual

survives to time t+1 given it was alive
at time t

hta Probability that an age a individual is
harvested and reported to wildlife
personnel in [t,t+1], given that it was
alive at time t

fta Per breeder recruitment rate over
[t, t+1], with reference to the number
of age a breeders in the population at
time t and the number of new recruits
at time t+1

Nta Number of age a individuals in the
population in year t immediately prior
to harvest. The N1a are parameters
while the remaining Nta(t > 1) are
treated as latent variables

N+
ta

∑∞
a
Nta

Statistics
Cta Number of age a individuals that are

harvested and reported to wildlife
personnel in year t

C+
tA

∑∞
a=A

Cta

M Total number of individuals marked and
released over the course of the
experiment

Hk Encounter history for individual k
tk1 Year in which animal k is first captured,

marked, and released
tk2 Year in which animal k is harvested and

reported, if encountered again
Ik Indicator variable equal to 1 if animal k

is harvested and reported at some
time, 0 otherwise

akt Age of animal k at time t
A Age at which an individual’s age cannot

be reliably distinguished from older
age classes

T Duration of the study (e.g., years)
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We intentionally formulated (1) to be compatible with the
mark-recovery model proposed by Brownie et al. (1985). This
formulation assumes that the PMF for [Cta |Nta , hta ] is given
by

Cta ∼ Binomial(Nta, hta).

Other formulations are certainly possible. For instance, Conn
(2007) considered the case where harvest counts were condi-
tional on the number of individuals that die in an interval,
which is consistent with the mark-recovery model given by
Seber (1982). One reviewer outlined an alternative observa-
tion model consistent with the work of Gove et al. (2002)
which took into account both harvest and natural mortality.
Both of these approaches impose natural constraints on har-
vest and natural mortality parameters and remove the need
to incorporate indicator functions into the observation model.
However, the Brownie parameterization is flexible with regard
to the timing of harvest and natural mortality, and leads to
better MCMC mixing than with the Seber parameterization
(Conn, 2007). The potential for ĥta > (1 − Ŝta) does not ap-
pear to be a factor that influences estimator performance,
at least over a reasonable range of simulation inputs (Conn,
2007).

2.3 Population Process Models
The observation model (1) conditions on a number of unob-
served latent abundance terms. Here, we characterize a gen-
eral class of wildlife population dynamics models that provide
further structure to these variables. First, we condition on N1,
the vector of age-specific population sizes in year one imme-
diately prior to harvest (where Nt = {N t1, N t2, . . . ,N t,A−1,
N+

tA}). We then write the joint PMF of abundance in year two
as

[N2 |N1, f1,S1] = [N21 |N1, f1]

× [N22 |N11, S11] · · · [N2A |N1,A−1, S1,A−1]

×
[
N+

2,A+1

∣∣N+
1A, S1A

]
.

Here, St = {St1, St2, . . . ,StA}, the vector of survival proba-
bilities in year t, and ft = {f t1, f t2, . . . , f tA}, the vector of
recruitment process intensities in year t. Remaining notation
is defined in Table 1.

Joint PMFs for subsequent years are similar, but an addi-
tional allowance is made for N+

t,A+1 when t > 1:

[Nt+1 |Nt, ft,St] = [Nt+1,1 |Nt, ft]

× [Nt+1,2 |Nt1, St1] · · · [Nt+1,A |Nt,A−1, St,A−1]

×
[
N+

t+1,A+1

∣∣NtA + N+
t,A+1, StA

]
. (2)

Note that this formulation implies that there is no immigra-
tion to or emigration from the harvestable population. As
such, age-specific population structure is modeled as a first-
order Markov process. Conditional on the vector of abun-
dances in the first year and parameters for survival and re-
cruitment processes, we may thus write the probability of all
future age- and time-specific abundances as

[N |N1,S, f ] =

T−1∏
t=1

[Nt+1, |Nt, ft,St],

where f and S denote the vector of all fta and Sta parameters
(t = 1, 2, . . . ,T − 1, a = 1, 2, . . . ,A), respectively.

In the preceding formulation, population size in year t + 1
consists of individuals who have survived from year t as well
as new recruits to the population. As written, the number
of new recruits depends on abundance in the previous year;
however, in some cases, individuals may not enter the har-
vestable population for several years after they are born. If
this is the case, we may simply condition on the augmented
vector [N1, N21, . . . , NAr+1,1], replacing [Nt+1,1 |Nt, ft] with
[Nt+Ar+1,1 |Nt, ft]. Here, Ar gives the age at which animals
are recruited to the population at risk of harvest. Choices of
PMFs for survival and recruitment will depend on the popu-
lation in question, but we suspect that binomial and Poisson
models will commonly be appropriate for each process, with
possible overdispersion incorporated via random effects.

2.4 Likelihood
We suggest that inference be based on the likelihood

L1 = [C,N |N1,S,h, f ] = [C |N,h][N |N1,S, f ]. (3)

We retain the latent variables N in the likelihood because of
the computational difficulty in integrating them out, and be-
cause they may be of considerable interest to biologists (Link,
Royle, and Hatfield, 2003). Indeed, predictions of total fe-
male population size in year t may be made with the quantity
N̂t = N̂+

tA +
∑A−1

a=1 N̂ta.

2.5 Auxiliary Data
Even with highly constrained models, (3) is overparameter-
ized (for an exploration of parameter identification in simi-
larly structured models, see Gove et al., 2002). To generate
sensible estimates of model parameters, additional informa-
tion is needed. Gove et al. (2002) suggested basing inference
on a joint likelihood similar to

L = L1L2, (4)

where L2 gives the likelihood for an auxiliary data set per-
taining to survival and harvest parameters, such as from a
radio-telemetry or mark-recovery study. A similar approach
was used in the joint analysis of census and mark-recovery
data (Besbeas et al., 2002). No matter what data set is mod-
eled, it is imperative that the likelihood for auxiliary data be
structured in such a manner so that survival and harvest pa-
rameters can be shared between L1 and L2. Even so, data limi-
tations will often require the use of reduced parameter models.
While parameter identification is not explored in great depth
here, we hope that the following example will provide some
intuition about what types of reduced parameter models will
be useful in practice.

3. Example
We collected statewide marking and harvest records for black
bears in Pennsylvania for the period 1986–1999 from the
Pennsylvania Game Commission (PGC; Web Table 1). Dur-
ing this time period, PGC personnel captured bears through-
out their range, determined their sex and age, and released
them with individually identifiable metal ear tags. Marking
occurred between March and November each year. Following
a three-day hunting season in November, hunters were re-
quired to present all harvested bears to PGC check stations,
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where age and sex information was collected and the identity
of marked bears was recorded. For further details on sampling
protocols, see Diefenbach, Laake, and Alt (2004).

Several unique features of the bear data motivated us to
elaborate on the general model for age-at-harvest data pre-
sented in Section 2. First, we set recruitment parameters for
cubs and yearlings to 0, as Pennsylvania black bear typically
do not become pregnant before age two (Kordek and Lindzey,
1980; Alt, 1989). Second, we replaced the recruitment terms
[Nt+1,1 |Nt, ft] in (2) and (3) with [Nt+1,1 |Nt − Ct, ft]. In the
case of black bears in Pennsylvania, the probability that a
hunter reports a harvested bear to wildlife officials is thought
to be near 1.0. As such, subtracting the observed harvest from
population size, the previous year represents the population
size immediately after harvest. Conditioning on this quantity
should remove one potentially time-varying component from
the recruitment process; formulating prior distributions for f
should also be simplified in this case, although this consider-
ation is beyond the scope of the article.

We assumed binomial models for survival and harvest pro-
cesses, and a Poisson model for the recruitment process. As
such, we may write the age-at-harvest likelihood as

L1 = L(C,N |S,h, f ,N1)

=

T−1∏
t=1

exp(−λt)λ
Nt+1,1
t

Nt+1,1!

×
T−1∏
t=1

A−1∏
a=1

(
Nta

Nt+1,a+1

)
S

Nt+1,a+1
ta (1 − Sta)

Dta

×
(

N+
1A

N+
2,A+1

)
S

N+
2,A+1

1A (1 − S1A)D1A

×
T−1∏
t=2

(
NtA + N+

t,A+1

N+
t+1,A+1

)
S

N+
t+1,A+1

tA (1 − StA)DtA

×
T∏
t=1

A−1∏
a=1

(
Nta

Cta

)
hCta
ta (1 − hta)

Nta−Cta

×
(

N+
1A

C+
1A

)
h
C+

1A
1A (1 − h1A)X1A

×
T∏
t=2

(
NtA + N+

t,A+1

C+
tA

)
h
C+

tA
tA (1 − htA)XtA .

Here,

Dta =

{
Nta −Nt+1,a+1, a < A or i = 1,

NtA + N+
t,A+1 −N+

t+1,A+1, otherwise,

Xta =

{
Nta − Cta, a < A or t = 1,

NtA + N+
t,A+1 − C+

tA, otherwise

and

λt =

A+∑
a=3

ftaXta.

For this study, A = 6 and T = 14 (individuals that were cubs
immediately prior to harvest were given an age index of 1).

In addition to age-at-harvest data, we also compiled mark-
recovery histories for all females marked over the course of
the study. However, we directly modeled encounter histories
instead of using minimum sufficient statistics (e.g., Brownie
et al., 1985). We write this likelihood as

L2 ∝
M∏
k=1

Pr(Hk),

where

Pr(Hk) =




htk2,ak,tk2

tk2−1∏
t=tk1

St,ak,t
, Ik = 1,

1 − htk1,ak,tk1
−

T−1∑
i=tk1


 i∏

j=tk1

Sj,akj


hi+1,ak,i+1

, Ik = 0,

and definitions of statistics and parameters are given in Ta-
ble 1.

We made all the common assumptions typical for mark-
recovery studies (Williams, Nichols, and Conroy, 2002): ani-
mals behave independently, marks are not lost or overlooked,
and there is no individual heterogeneity (at least that cannot
be explained by age class). Further, we assumed that there is
no mortality between the time a bear is marked and the har-
vest season. Several of these assumptions may be violated to
some degree; for instance, sampling effort to mark black bears
was distributed between March and November, although mor-
tality was thought to be low during this period for individ-
uals greater than one year of age. Nevertheless, the recovery
rates of cubs were likely underestimated, ostensibly causing a
positive bias in the number of new recruits each year. Fates
of members of family groups (females with cubs) were not
independent, which would cause negative bias in variance es-
timates. Tag loss occurred, but was of small magnitude for fe-
males (Diefenbach and Alt, 1998). As suggested in Section 2,
we based inference on (4), which assumes that mark-recovery
and age-at-harvest data are independent. Nevertheless, we in-
cluded data from marked individuals in the age-at-harvest
matrix so that total population abundance could be esti-
mated. In some settings, this assumption may also result
in measures of uncertainty that are too precise (see Conn,
2007).

In total, we fit four models to the data, which varied by
the number of fixed and random effects on the logits of sur-
vival and recovery rate, and on the log of recruitment rate
(Table 2). Models for Sta , hta , and fta were linear on a trans-
formed scale, consistent with current practice in the capture–
recapture literature (cf. Lebreton et al., 1992). In each case,
all parameters were identifiable (e.g., Conn, 2007); in our ex-
perience, identifiability of survival and recovery parameters
from mark-recovery data alone served as a reasonable indi-
cator for whether abundance and recruitment rates in the
joint model could be identified. This is important because
parameter identification for product multinomial models (in-
cluding mark-recovery models) is a topic that has received
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Table 2
Models fit to age-at-harvest and mark-recovery data sorted by estimated DIC, where ∆DIC gives the

difference in DIC from the highest ranked model. When time is included in the model structure,
demographic parameters are modeled as random effects, while age is always modeled as a fixed effect.

Also presented are Bayesian p-values (pB) for each model.

Model name Logit(Sta) Logit(hta) Log(fta) ∆DIC pB

S(a + t)h(a + t)f(t) γa + αt φa + υt + εta β + κt 0.0 0.67
S(a + t)h(a + t)f(·) γa + αt φa + υt + εta β 1.8 0.74
S(a)h(a)f(t) γa φa + εta β + κt 15.4 0.56
S(a)h(a)f(·) γa φa + εta β 20.4 0.48

considerable attention in the literature (e.g., Catchpole and
Morgan, 1997; Giminez, Choquet, and Lebreton, 2004).

Preliminary analysis indicated substantial differences in ob-
served and expected harvest data when a model such as

Logit(hta) = υt + φa

was fit to the data. These differences likely resulted from an-
nual changes in the temporal distribution of denning dates
as well as the percentage of a given cohort that was preg-
nant. Pregnant females typically den prior to the rest of the
population, and thus are more likely to be unavailable for har-
vest during the hunting season. It was difficult to model these
biological processes directly, so we followed the approach of
Barry et al. (2003) and included overdispersion terms, εta , in
the formulation for harvest rates. These were modeled as ran-
dom effects on the logit scale and were assumed to have a
normal distribution with mean zero and precision parameter
τε. Similarly, when included in the model structure, year ef-
fects (i.e., αt , υt , and κt) were normally distributed random
effects on the logit scale with mean zero and precision pa-
rameters τα, τυ, and τκ, respectively. Remaining parameters
(Table 2) were all modeled as fixed effects.

Conducting a Bayesian analysis required that we specify
prior distributions for model parameters. In particular, we
chose a diffuse, improper prior for abundance (Link et al.,
2003), priors for fixed effects that were approximately uni-
form when transformed to (0,1) space, a prior for recruitment
process intensity that was relatively flat over all biologically
plausible values, and a prior for the precision of random effects
that precluded clumping at 0 and 1 on transformed parameter
spaces. Priors were given by

[N1j ] ∝ c,

[γj ], [φj ] ∼ Normal(0, 3),

[β] ∼ Normal(0.25, 1), and

[τα], [τυ], [τκ], [τε] ∼ Gamma(0.1, 0.1).

We used Gibbs sampling to sequentially update each pa-
rameter and latent variable. The full conditionals for precision
parameters were available in closed form, and were simulated
directly as

[τα |α ] ∼ Gamma


T − 1

2
+ 0.1,

∑
α2
t

2
+ 0.1


 ,

[τυ |υ ] ∼ Gamma


T

2
+ 0.1,

∑
υ2
t

2
+ 0.1


 ,

[τκ |κ ] ∼ Gamma


T − 1

2
+ 0.1,

∑
κ2
t

2
+ 0.1


 , and

[τε | ε] ∼ Gamma


Y A

2
+ 0.1,

∑
ε2
ta

2
+ 0.1


 .

All remaining parameters and variables were updated with
Metropolis–Hastings steps. Proposals in a given iteration were
normally distributed with a mean at the previous iteration’s
parameter value, and a standard deviation was chosen to
achieve a 35–40% acceptance rate. Proposals outside the sup-
port of abundance classes were automatically rejected. This
solution worked reasonably well for these data; for details on
alternatives for highly constrained problems see Conn (2007).

For each model, we ran two independent Markov chains
of length one million with overdispersed starting values. In
all cases, Gelman–Rubin statistics (Gelman et al., 2004) in-
dicated convergence after 100,000–200,000 iterations. Never-
theless, we treated the first 500,000 iterations as a burn-in
and combined the second halves of each chain to generate a
sample of one million from the posterior distribution. To save
disk space, this sample was thinned to 200,000 by record-
ing every fifth iteration. Marginal posterior distributions were
then summarized by calculating moments and 90% HPD
Bayesian credible intervals. Deviance information criterion
(DIC; Spiegelhalter et al., 2002) was also calculated for pur-
poses of model selection.

We implemented a goodness-of-fit test based on a Bayesian
p-value (Gelman et al., 2004) for the age-at-harvest portion
of the likelihood. For a given sample i from the posterior dis-
tribution, we simulated harvest data, Crep

t , given θ t, the set of
parameter values at iteration t. Next, deviance for the age-at-
harvest portion of the likelihood was calculated for observed,
Dt(C, θ t), and for simulated, Dt(C

rep
t , θ t), data. The Bayesian

p-value was then obtained as

pB =
1

K

K∑
t=1

I[0,∞)

[
Dt

(
Crep

t , θ t

)
− Dt(C, θ t)

]
,
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Figure 1. Abundance of female black bears in Pennsylva-
nia from 1986 to 1998 as (a) predicted from the joint age-at-
harvest and mark-recovery analysis, and (b) estimated with
the bias-corrected LP estimator. Posterior means and 90%
Bayesian credible intervals are presented from the highest
ranked DIC model, while point estimates and 90% asymp-
totic confidence intervals are presented for the LP estimator.

where K denotes the total number of samples in which
age-at-harvest data is simulated, and IΩ(x) denotes an
indicator function for the set Ω. In our case, we let
K = 200, spacing samples evenly across Markov chain
iterations.

When fit to the data, models including time varying sur-
vival and recovery rates were strongly favored by DIC, with
some support for temporal effects on recruitment (Table 2).
Posterior summaries from the highest ranked model indi-
cated female black bear abundance increased in Pennsylva-
nia from 1986 to 1999 (Figure 1). To contrast our estimator
with another commonly used abundance estimator, we com-
puted year-specific bias-corrected Lincoln–Petersen (LP) es-
timates of abundance, together with accompanying variances
(Seber, 1982). Point estimates from the LP estimator had
greater standard errors (Figure 1). Further, consecutive point
estimates using the LP approach were often biologically im-
plausible (e.g., due to constraints on reproductive capacity;
see Alt, 1989). Diefenbach et al. (2004) noted this tendency,
suggesting that annual changes in the availability of pregnant
females for harvest could lead to a high degree of variability
in single season estimators of abundance. In addition to abun-
dance, we also summarized posterior distributions for survival
probability (Figure 2), recovery probability (Figure 3), and
recruitment rate (Figure 4), three quantities of fundamental
interest to population biologists and wildlife managers. These
estimates reconfirm that the black bear population in Penn-
sylvania is one of the most productive in the United States
(Alt, 1989).
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Figure 2. Female black bear survival (Ŝta) in Pennsylvania
from 1986 to 1998 as estimated from age-at-harvest and mark-
recovery data. Posterior means and 90% Bayesian credible
intervals are presented from the highest ranked DIC model.
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Figure 3. Recovery probabilities (ĥta) for female black
bears in Pennsylvania from 1986 to 1998 as estimated from
a joint analysis of age-at-harvest and mark-recovery data.
Posterior means and 90% Bayesian credible intervals are pre-
sented from the highest ranked DIC model.

4. Discussion
In this article, we were able to estimate a number of demo-
graphic parameters by jointly modeling the age structure of
harvests and mark-recovery data. By adopting a state-space
formulation, we were able to conduct the analysis using a like-
lihood structured in a hierarchical fashion. This allowed us to
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Figure 4. Estimated recruitment rate (f̂ta) for Pennsylva-
nia black bear from 1987 to 1999. Presented are posterior
means and 90% Bayesian credible intervals from the highest
ranked DIC model.

improve upon previously proposed models for analyzing age-
at-harvest data for wildlife. In particular, we specified popula-
tion models with a self-loop for older age classes as well as an
explicit recruitment process. Further, the Bayesian approach
to the problem allows one to properly model stochasticity in
abundance classes and to specify prior distributions that con-
strain parameters to biologically realistic values. While we did
not do so here, density-dependent processes also could be con-
templated, either by specifying process covariances or by the
introduction of functional relationships between parameters.

Previous analyses of these data using a Horvitz–Thompson
type estimator (Diefenbach et al., 2004) sometimes yielded
conflicting point estimates and could not incorporate perti-
nent information about black bear biology. For instance, an-
nual changes in point estimates of abundance often were dra-
matically different from what biologists would expect based
on the knowledge of survival, fecundity, and movement of the
species. Also, age-specific abundances were often biologically
unreasonable for a system relatively closed to emigration and
immigration; for instance, the abundance estimate of year-
lings in year two could be greater than that for the number of
cubs in year one. In contrast, our approach led to parameter
estimates that were internally consistent because biological
processes were embedded into the estimation process. This
feature, along with the use of extra data from marked ani-
mals, led to greater precision and less temporal variation in
point estimates than the LP estimator.

With regard to Pennsylvania black bear, future work should
explore the tenability of several key model assumptions, such
as the assumption of no preharvest mortality following mark-
ing. This assumption will be violated to some degree, partic-
ularly for cubs that are marked in dens during March, and
may induce positive bias in abundance estimates. Tag loss

could also induce bias when multiple years are analyzed within
the mark-recovery framework and the lack of independence of
fates of family groups (females with cubs) may introduce un-
modeled overdispersion.

Finally, we note that the modeling framework we devel-
oped can be extended to incorporate additional data sources.
For instance, if recaptures are available in addition to recov-
eries, one may simply replace L2 with another likelihood (e.g.,
Burnham, 1993). Likewise, information from radio-telemetry
studies could be incorporated (e.g., Gove et al., 2002). Exten-
sions to handle aging misclassification are also readily avail-
able (Conn and Diefenbach, 2007). We believe this flexibility
is essential for biologists, who are often confronted with a
diverse array of data sources and sampling challenges.

5. Supplementary Materials
Web Table 1 referenced in Section 3 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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